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Abstract 
A Bayesian approach to the treatment of uncertainty in 
maximum-entropy maps is developed based on a deeper 
hypothesis space that includes the prior map. The new approach 
is able to take into account uncertainty in the knowledge of the 
prior and provides a generalization of 'classic MaxEnt'. Some 
examples of the new approach are presented for simulated 
SAXS data for cytochrome c. 

1. Introduction 
Maximum entropy has become a powerful tool for statistically 
inverting scattering data, e.g. in analysing X-ray scattering data 
from large molecules in crystalline form (Bricogne, 1993) and 
also in solution (e.g. Miiller & Hansen, 1994). Typically, an 
estimate for the 'best map' based on the given data and prior 
information is presented. The question uamrally arises as to 
the degree of belief to be attached to different points in the 
map. A partial treatment of this problem has been presented 
by Sldlling (1989) in connncction with the development of 
'classic MaxEnt' based on a Bayesian argument. However, this 
treatment can lead to unrealistically small estimates for the 
uncertainty in a map relative to a prior even when the prior 
map in the given region is not known with a high degree of 
confidence. In the present note, we explore this matter further 
and also consider the effect that uncertainty in the prior map 
has on the uncertainty in the 'best map'. It transpires that, given 
some simple and reasonable assumptions, there is an elegant 
symmetry between the influence of uncertainty in the prior 
map and uncertainty in the data leading to a generalization of 
'classic MaxEnt'. The resulting expression should be useful in 
assessing the reliability of different regions of a map in a wide 
class of scattering problems. 

2. Generalized MaxEnt 
Let us assume that we have a map described by the continuous 
variable f over the N pixels of the map, i.e. f = (fl ,  f2, ..., f g )  
and that we also have a prior map m = (ml,m2,...,mN). 
Then, for data d = (dl, d2, ..., dM), Bayes's theorem leads to 
the expression 

P( f ld ,  m ) =  P(dlf)P(f lm)/P(d ) (1) 

for the probability P of f conditional on d and m with the 
assumption that m and d are independent. 

Regarding m as nuisance parameters (see e.g. Jaynes, 
1986) which can (at least in principle) be integrated out, the 
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probability of f conditional only on the measurement d is 
given by 

P ( f ld )  cx fp~or P(dlf)P(f lm)P(m)dm (2) 

assuming that the data have been measured and consequently 
omitting P(d) .  For the probabilities on the right-hand side of 
(2) we have 

P ( d l f  ) cx exp ( -X~/2)  (3) 

with 

X ~ = E  d , -  a O a~,,, 
i=1 

(4) 

where the a~3 are the elements of the reponse matrix and we 
assume that the d~ are Gaussian variates. 

For the case of small-angle scattering from solutions, 
the response matrix is given by the Fourier transformation 
aij = sin (q~rj)/(q~rj), where qi is the length of the scattering 
vector at data point i and f j  is the value of the distance 
distribution function at the distance rj .  

For crystallography and the case of measured structure 
values with assumed known phases, (4) takes the form 

N 
2 2 = IDa- exp (27rirj. k) /ak, (4a) 

k j = l  

where D k is the measured structure factor and rj is the position 
of the j th pixel. 

If we now invoke the general expression for the probability 
of a map f about an arbitrary prior map m,  which is based 
on the maximum-entropy principle and the assumption of the 
stochastic model for maps known as the 'monkeys and balls' 
model then [see equations (5) and (7) in Wilkins, Steenstrup 
& Varghese (1985)] 

P ( f [ m )  c< exp (aS) (5) 

with 
N 

S -- - ~ f j  In ( f j /mj)  (6) 
j = l  

and a a Lagrange multiplier determining the relative weighting 
of the prior information (as given by the entropy) and the 
'new' information from the data (as given by the X~). Various 
methods for the choice of this Lagrange multiplier have been 
suggested (see e.g. Titterington, 1985). 
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If the distribution of the prior is assumed to be Gaussian 
with a mean fla and standard deviation o'm we have 

P(m) (x exp ( - X ~ / 2 )  (7) 

with 
N 

)2/a2 x L  = - / (8) 
j = l  

and 
P(f ld ,  fla) oc f exp (aS -  X~/2- XL/2)dmda.  (9) 

Jl, riors,c~ 
The error bars in a MaxEnt map may be obtained from 

(9) via 
P ( f  • V l d ,  rra) 

(X: JV ~Lri .... exp (aS -  X~/2- X~/2)dmdadf, (10) 

where m (and a which is to be determined for each m) acts 
as a set of nuisance parameters to be integrated over. 

If the Gaussian distribution of the prior is very narrow we 
have in the limit of er= = 0 the usual expression for the error 
determination 

P ( f  • V l d ,  fla) o ( / v  exp ( a S -  X~/2)df, (11) 

asstnning a to be known. This leads to the error matrix 
[ V V ( a S -  X~/2)] -1 taken in the maximum-entropy solution 
fmax, as usually quoted in the literature. 

Furthermore, if fm~ ~_ m, the value for a (given by 
1 a = ~[VX~[/[VS D will be large (as VS ~ 0), so that aVVS, 

which is diagonal with elements -a/ f j ,  will dominate the 
error matrix. In consequence, the error estimate for the solution 
will be determined only by the entropy metric leading to the 
possibility of unrealistically small estimates for the uncertainty 
in the map as mentioned in the Introduction. 

In the general case [(10)], for heuristic purposes the 
quadratic expansion for the entropy term is here employed: 

N 

j=l 

(for f ~_ m), in which case (10) can be approximated by 

P ( f  • Vld, fla) 

,x Jv Jl.or exp (-X2~/2 - X2a/2 - X~/2)dmdf ,  (13) 

A A 

demonstrating the symmetry in the roles of the variable f 
and the prior m. This symmetry is displayed schematically in 
Fig. l(a), where f and m are connected to each other, to the 
measured data d and to the estimated prior fla by constraints 
corresponding to 'rubber bands' (with an energy proportional to 
the square of elongation) and the problem of finding the 'best' 
m and f is now reduced to a minimization of the total energy 
of the bands. In this picture, the strengths of the three bands 
are determined by the belief in the prior (through o'm), the 
quality of the data (ira) and the assumption of Poisson statistics 
('monkeys and balls' model) for the quantity determining the 
form of the entropy constraint (Wilkins, Steenstrup & Varghese, 
1985). In analogy with three rubber bands, the solution (the 
minimum energy) is found as shown in Fig. l(b) where the 
linking points are aligned. 

As is evident from Fig. 1 (b), the estimate of f is influenced 
by the strength of the binding of m to the prior model fla, 

as a strengthening of this band will lead to a value for f, 
which is moved closer to fla. The estimate of f can be found 
by combining the two rubber bands X~ and X~ into a single 
effective band, leading to the new constraint 

N 
X~,m ~- E (~'~%j -- f 3 ) 2 / [  O'm'j "[- (~tJ/o~)l/2] 2 (14) 

j=l  

and the approximation 

P ( f  • V l d ,  fla) o( exp (-X,,m/2- X~/2)df. (15) 

Equation (15) is solved in the conventional manner and the 
error matrix can be found as described above but using the 
new effective prior described by (14). The new error matrix is 
now dependent on the uncertainty of the Gaussian prior. 

For the purpose of illustration, consider the special case that 
the reponse matrix is equal to unity. Consequently, the error 
matrix is diagonal and given by 

2 --1 e.~,={1/[am,.i+(~,/a)'/2]2+l/ad,,}, (16) 

where the usual expression (11) will lead to an error matrix 
with elements 

2 -1 = + (17) 

Comparison of (16) and (17) shows that the main effect of the 
introduced uncertainty or spread in the prior is to impose a 
lower limit upon the elements of the error matrix. The exact 
estimate of this uncertainty (o 's)  will usually not be very 
important as its main purpose is to avoid dominance of the 
a/f3 terms in the error matrix if, perhaps more by coincidence 
than firm belief, a prior close to the solution fm~, is used. 

With the errors estimated from (17), the a/f~ terms in the 
error matrix will be dominant. A similar scenario where the 
density of distributions defined by the entropy metric leads to 
absurdities has been described by Jaynes (1986), elaborating on 
the kangaroo problem invented by Gull & SkiUing (1984). In 
this problem, the density of states around the maximum-entropy 

~d 

/ / '  ~ ( ~  ~7 Z-- ~ ~ ~ ~ ~, x 

,iY'° a i 
i , / 

,, t 

"/ f~: "'" . . . . . . .  " -, Xm 

' p r io r  m o d e l  ' 

(a) 

i" "4 
t 

" ," Xd 4 £ / 

*-f---- S 

,,"" Xm 

l &a , 

(b) 

Fig. 1. Schematic illustration of combined constraint and regularization 
relations for generalized MaxEnt in (a) the general ease and (b) the 
case where the MaxEnt condition is satisfied. 
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Fig. 2. (a) Error bars: simulated data for cytochrome c. Full line: MaxEnt 
fit to data. (b): Full line and error bars: classic MaxEnt estimate of 
distance distribution function corresponding to (a). Error bars are 
shown at distances corresponding to the resolution of the simulated 
data. Dotted line: the distance distribution function for cytochrome c. 
(c) Full line and error bars: generalized MaxEnt estimate of distance 
distribution function corresponding to (a). Error bars are shown at 
distances corresponding to the resolution of the simulated data. Dotted 
line: the distance distribution function for cytochrome c. 

solution increases as the number of kangaroos increase (the 
number of kangaroos or the density resolution or the number 
of grey-scale levels of a picture corresponds to the Lagrange 
multiplier a in the above treatment) leading to an error estimate 
that is obviously too small. In analogy with the kangaroo 
problem where the resolution of the problem is obtained by the 
introduction of a variability of the parameters describing the 
prior information (the generating function for m, the form of 
which is determined by some simple requirements), we have 
here attempted to treat the general problem of error estimation 
in MaxEnt by the introduction of a similar variability of m. 

In a similar attempt to 'soften' the implicit assumptions of 
the prior, Gull (1989) introduces 'hidden variables' and a 'pre- 
blur' to account for the strength of the binding of the solution 
f to the prior fla. Both Gull's hidden variables and Jaynes's 
generating function could be argued to be the consequence of 
an uncertainty in the prior and an attempt to avoid the penalty 
for using a 'wrong' prior in the calculations. ('wrong' in the 
sense of rh being far from fm~x). From the above it seems 
that the problem of error calculation is more fundamentally 
approached if the concept of an uncertainty in the prior is 
introduced at the outset and the estimate of this uncertainty is 
allowed to propagate through the further calculations. 

To illustrate the problems mentioned above, simulated small- 
angle X-ray scattering data on cytochrome c is shown in Fig. 
2(a) (from Miiller & Hansen, 1994). The result of a classic 
MaxEnt calculation of the distance distribution function is 
shown in Fig. 2(b) using a prior close to the final estimate 
(a prior that could have been obtained, for example, from 
measurements at lower resolution). The size of the error bars 
is clearly underestimated especially at short distances. The 
inclusion of uncertainty in the prior as described above gives 
the result shown in Fig. 2(c). For this case, the uncertainty in 
the prior was simply taken as a constant to illustrate our point. 
If the prior is taken from previous measurements, the errors 
from these measurements could be used to estimate the errors 
on the prior. However, in spite of this very simplistic example, 
it is evident from Fig. 2(c) that the size of the error bars now 
takes a more realistic value demonstrating the validity of the 
approach outlined above. 

Finally, it should be noted that the dominance of the 
regularizing term is frequently a problem in regularization 
(not just when the entropy happens to be the regularizer). A 
Bayesian argument similar to the one given above could be 
carded through for the cases of these and other regularizing 
functions. 

3 Concluding remarks 
In the present paper, our main purpose has been to provide 
a broad conceptual framework for treating the problem of 
error estimation in MaxEnt. Furthermore, we have attempted 
to give a simple and transparent approach to the problem of 
error estimation in maps by suggesting the substitution of (14) 
for (12) in the calculation of the error matrix. In the case of 
the important problem of crystal structure determination from 
diffraction data, the present formulation offers a framework in 
which local structural information together with a degree of 
belief can be introduced into a crystal-structure determination 
and so provide an additional driving force toward the solution, 
e.g. in the map-determination cycle of the combined maximum- 
entropy and maximum-likelihood approach to this problem 
developed by Bricogne (1993, and references cited therein). As 
particular regions of a map become more accurately determined 
and identified, the constraint on m can be tightened up and 
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in turn will tend to make the Hessian more strongly 
convex, thus aiding the structure-determination process [see 
(14)]. By this means, the information contained in a molecular 
envelope (solvent flattening) and molecular fragments could, 
for example, be incorporated in the map. 
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Abstract 

A typesetting error in equation (28) of Elcoro, Perez-Mato 
& Madariaga [Acta Cryst. (1994), A50, 182-193] is correc- 
ted. The correct equation is 

F(H) = [IAI/V(ai)] Y. pm(/Z) f,,(l'l) 
II . ,m 

x Z exp ( -  RH~:RI-I )  
R 

x exp [2rrih- (R0,. + i)] f d~o, ...dq~n_ 4 
g2 

where 

and 

b 

x fdrJ(r,~p~ ..... ~o,_,) exp [2rri(r  7 'Rzh~). Xl], 
a 

(28) 

a Z ~,in = ai Zi(~ol,...,~o,-4) 
i 

/~ ,¢x b = E a ,  Zi(~Ol . . . . .  (Pn-4)- 
i 

All information is given in the Abstract. 
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Abstract 

The following mathematical expressions were incorrectly 
printed in the paper by Davis [Acta Cryst. (1994), A50, 
224-231]. 

Page 225: the correct expression for X-h is 

x - h  = - C('/d To)X'h. 

Page 228: equations (22) and (23) should read 

© 1994 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

R(t) = Ro + [R(t') - Ro] exp [2 i aw( t -  t')] 

x (1 + [z~(t')- Ro](X_fl2to) 

x {1 - e x p  [2 ia to( t -  t')]})-1, 

~o = +_ (fl2_ Xh X - h )  ~:2. 

(22) 

(23) 

All information is given in the Abstract. 
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